The molecular basis of chloride transport in shark rectal gland.

نویسندگان

  • J R Riordan
  • B Forbush
  • J W Hanrahan
چکیده

Transepithelial Cl- secretion in vertebrates is accomplished by a secondary active transport process brought about by the coordinated activity of apical and basolateral transport proteins. The principal basolateral components are the Na+/K(+)-ATPase pump, the Na+/K+/2Cl- cotransporter (symporter) and a K+ channel. The rate-limiting apical component is a cyclic-AMP-stimulated Cl- channel. As postulated nearly two decades ago, the net Cl- movement from the blood to the lumen involves entry into the epithelial cells with Na+ and K+, followed by active Na+ extrusion via the pump and passive K+ exit via a channel. Intracellular [Cl-] is raised above electrochemical equilibrium and exits into the lumen when the apical Cl- channel opens. Cl- secretion is accompanied by a passive paracellular flow of Na+. The tubules of the rectal glands of elasmobranchs are highly specialized for secreting concentrated NaCl by this mechanism and hence have served as an excellent experimental model in which to characterize the individual steps by electrophysiological and ion flux measurements. The recent molecular cloning and heterologous expression of the apical Cl- channel and basolateral cotransporter have enabled more detailed analyses of the mechanisms and their regulation. Not surprisingly, since hormones acting through kinases control secretion, both the Cl- channel, which is the shark counterpart of the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), and the cotransporter are regulated by phosphorylation and dephosphorylation. The primary stimulation of secretion by hormones employing cyclic AMP as second messenger activates CFTR via the direct action of protein kinase A (PKA), which phosphorylates multiple sites on the R domain. In contrast, phosphorylation of the cotransporter by as yet unidentified kinases is apparently secondary to the decrease in intracellular chloride concentration caused by anion exit through CFTR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfusion of isolated tubules of the shark rectal gland. Electrical characteristics and response to hormones.

Both the mammalian thick ascending limb of Henle's loop and the shark rectal gland actively transport Cl against an electrochemical gradient by mechanisms involving hormone-sensitive NaCl transport. In contrast to mammalian renal tubules, individual tubules of the shark rectal gland previously have not been perfused in vitro. Using a combination of renal slice and microdissection techniques we ...

متن کامل

The shark rectal gland: a model for the active transport of chloride.

The rectal gland of the spiny dogfish, Squalus acanthias, provides an easily studied model of active chloride transport powered indirectly by Na-K-ATPase. Co-transport of sodium with chloride can be demonstrated in membrane vesicles isolated from basolateral membranes of the gland. Chloride secretion is under the hormonal control of vasoactive intestinal peptide, and possibly other agents, via ...

متن کامل

Excretory transport of xenobiotics by dogfish shark rectal gland tubules.

Marine elasmobranch rectal gland is a specialized, osmoregulatory organ composed of numerous blind-ended, branched tubules emptying into a central duct. To date, NaCl excretion has been its only described function. Here we use isolated rectal gland tubule fragments from dogfish shark ( Squalus acanthias), fluorescent xenobiotics, and confocal microscopy to describe a second function, xenobiotic...

متن کامل

Mechanism of active chloride secretion by shark rectal gland: role of Na-K-ATPase in chloride transport.

The isolated rectal gland of Squalus acanthias was stimulated to secrete chloride against an electrical and a chemical gradient when perfused in vitro by theophylline and/or dibutyryl cyclic AMP. Chloride secretion was depressed by ouabain which inhibits Na-K-ATPase. Thiocyanate and furosemide also inhibited chloride secretion but ethoxzolamide, a carbonic anhydrase inhibitor, did not. Chloride...

متن کامل

Shark rectal gland vasoactive intestinal peptide receptor: cloning, functional expression, and regulation of CFTR chloride channels.

Vasoactive intestinal peptide (VIP) is a secretagogue that mediates chloride secretion in intestinal epithelia. We determined the relative potency of VIP and related peptides in the rectal gland of the elasmobranch dogfish shark and cloned and expressed the VIP receptor (sVIP-R) from this species. In the perfused rectal gland, VIP (5 nM) stimulated chloride secretion from 250 +/- 66 to 2,604 +/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 196  شماره 

صفحات  -

تاریخ انتشار 1994